Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Elife ; 122024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526948

RESUMO

Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid-liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.


Natural oscillations known as circadian rhythms influence many processes in humans and other animals including sleep, eating, brain activity and body temperature. These rhythms allow us to anticipate and prepare for regular changes in our environment including day-night cycles and the temperature of our surroundings. Circadian clocks in animals, fungi and other 'eukaryotic' organisms rely on networks of components that repress their own production to generate oscillations in their levels in cells over the course of a 24-hour period. The components in animal and fungus circadian clocks are different but there are strong similarities in their properties and how the networks operate. As a result, a type of fungus known as Neurospora crassa is often used as a model to study how circadian rhythms work in animals. A central component in the N. crassa circadian clock is a protein known as Frequency (FRQ). It is a large protein that, unlike most proteins, lacks a well-defined, three-dimensional structure. Despite this, it is able to bind to and regulate other proteins to repress its own production. One of its protein partners known as CK1 attaches small tags known as phosphate groups to FRQ to set the length of the circadian rhythm. However, it remains unclear how FRQ interacts with its protein partners or what effect the phosphate groups have on its activity. To address this question, Tariq, Maurici et al. used biochemical approaches to study the structure of FRQ. The experiments revealed that it contains a compact core that is able to bind to CK1 and other protein partners. The way FRQ regulates its protein partners is unusual: it undergoes a chemical process known as liquid-liquid phase separation to sequester other circadian clock proteins and modulate their enzymatic activities. In this process, a solution containing molecules of FRQ separates into two distinct components (known as phases), one of which contains FRQ and its partners in a concentrated liquid-like mixture. Evidence for such mixtures has also been found in living fungal cells. Further experiments suggest that liquid-liquid phase separation of FRQ may allow the clock to compensate for changes in temperature to maintain a regular rhythm. The circadian clocks of animals and other organisms all have proteins that perform similar roles as FRQ and maintain sequence properties that promote liquid-liquid phase separation. Therefore, it is possible that liquid-liquid phase separation may be a common feature of circadian rhythms in nature.


Assuntos
Relógios Circadianos , Neurospora crassa , Relógios Circadianos/genética , Fosforilação , Separação de Fases , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Ritmo Circadiano/genética
2.
Biochemistry ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294880

RESUMO

Circadian rhythms are determined by cell-autonomous transcription-translation feedback loops that entrain to environmental stimuli. In the model circadian clock of Drosophila melanogaster, the clock is set by the light-induced degradation of the core oscillator protein timeless (TIM) by the principal light-sensor cryptochrome (CRY). The cryo-EM structure of CRY bound to TIM revealed that within the extensive CRY:TIM interface, the TIM N-terminus binds into the CRY FAD pocket, in which FAD and the associated phosphate-binding loop (PBL) undergo substantial rearrangement. The TIM N-terminus involved in CRY binding varies in isoforms that facilitate the adaptation of flies to different light environments. Herein, we demonstrate, through peptide binding assays and pulsed-dipolar electron spin resonance (ESR) spectroscopy, that the TIM N-terminal peptide alone exhibits light-dependent binding to CRY and that the affinity of the interaction depends on the initiating methionine residue. Extensions to the TIM N-terminus that mimic less light-sensitive variants have substantially reduced interactions with CRY. Substitutions of CRY residues that couple to the flavin rearrangement in the CRY:TIM complex have dramatic effects on CRY light activation. CRY residues Arg237 on α8, Asn253, and Gln254 on the PBL are critical for the release of the CRY autoinhibitory C-terminal tail (CTT) and subsequent TIM binding. These key light-responsive elements of CRY are well conserved throughout Type I cryptochromes of invertebrates but not by cryptochromes of chordates and plants, which likely utilize a distinct light-activation mechanism.

3.
PNAS Nexus ; 2(12): pgad349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38047041

RESUMO

Spirochetes cause Lyme disease, leptospirosis, syphilis, and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by the action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) and Lyme disease pathogen Borreliella burgdorferi (Bb) form covalent lysinoalanine (Lal) cross-links between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. In Td, Lal is unnecessary for hook assembly but is required for motility, presumably due to the stabilizing effect of the cross-link. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal cross-linked peptides in recombinant and in vivo-derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp. As was observed with Td, a mutant strain of Bb unable to form the cross-link has greatly impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans FlgE also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveal that the Lal cross-link is a conserved and necessary posttranslational modification across the spirochete phylum and may thus represent an effective target for the development of spirochete-specific antimicrobials.

4.
PLoS Pathog ; 19(11): e1011752, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011206

RESUMO

As an enzootic pathogen, the Lyme disease bacterium Borrelia burgdorferi possesses multiple copies of chemotaxis proteins, including two chemotaxis histidine kinases (CHK), CheA1 and CheA2. Our previous study showed that CheA2 is a genuine CHK that is required for chemotaxis; however, the role of CheA1 remains mysterious. This report first compares the structural features that differentiate CheA1 and CheA2 and then provides evidence to show that CheA1 is an atypical CHK that controls the virulence of B. burgdorferi through modulating the stability of RpoS, a key transcriptional regulator of the spirochete. First, microscopic analyses using green-fluorescence-protein (GFP) tags reveal that CheA1 has a unique and dynamic cellular localization. Second, loss-of-function studies indicate that CheA1 is not required for chemotaxis in vitro despite sharing a high sequence and structural similarity to its counterparts from other bacteria. Third, mouse infection studies using needle inoculations show that a deletion mutant of CheA1 (cheA1mut) is able to establish systemic infection in immune-deficient mice but fails to do so in immune-competent mice albeit the mutant can survive at the inoculation site for up to 28 days. Tick and mouse infection studies further demonstrate that CheA1 is dispensable for tick colonization and acquisition but essential for tick transmission. Lastly, mechanistic studies combining immunoblotting, protein turnover, mutagenesis, and RNA-seq analyses reveal that depletion of CheA1 affects RpoS stability, leading to reduced expression of several RpoS-regulated virulence factors (i.e., OspC, BBK32, and DbpA), likely due to dysregulated clpX and lon protease expression. Bulk RNA-seq analysis of infected mouse skin tissues further show that cheA1mut fails to elicit mouse tnf-α, il-10, il-1ß, and ccl2 expression, four important cytokines for Lyme disease development and B. burgdorferi transmigration. Collectively, these results reveal a unique role and regulatory mechanism of CheA1 in modulating virulence factor expression and add new insights into understanding the regulatory network of B. burgdorferi.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Carrapatos , Animais , Camundongos , Histidina Quinase/genética , Histidina Quinase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Quimiotaxia , Doença de Lyme/genética , Doença de Lyme/microbiologia , Carrapatos/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Fator sigma/metabolismo
5.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398457

RESUMO

Spirochete bacteria cause Lyme disease, leptospirosis, syphilis and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) catalyzes the formation of covalent lysinoalanine (Lal) crosslinks between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. Although not necessary for hook assembly, Lal is required for motility of Td, presumably due to the stabilizing effect of the crosslink. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal crosslinked peptides in recombinant and in vivo -derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp.. Like with Td, a mutant strain of the Lyme disease pathogen Borreliella burgdorferi unable to form the crosslink has impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveals that the Lal crosslink is a conserved and necessary post-translational modification across the spirochete phylum and may thus represent an effective target for spirochete-specific antimicrobials. Significance Statement: The phylum Spirochaetota contains bacterial pathogens responsible for a variety of diseases, including Lyme disease, syphilis, periodontal disease, and leptospirosis. Motility of these pathogens is a major virulence factor that contributes to infectivity and host colonization. The oral pathogen Treponema denticola produces a post-translational modification (PTM) in the form of a lysinoalanine (Lal) crosslink between neighboring subunits of the flagellar hook protein FlgE. Herein, we demonstrate that representative spirochetes species across the phylum all form Lal in their flagellar hooks. T. denticola and B. burgdorferi cells incapable of forming the crosslink are non-motile, thereby establishing the general role of the Lal PTM in the unusual type of flagellar motility evolved by spirochetes.

6.
Nature ; 617(7959): 194-199, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100907

RESUMO

Circadian rhythms influence many behaviours and diseases1,2. They arise from oscillations in gene expression caused by repressor proteins that directly inhibit transcription of their own genes. The fly circadian clock offers a valuable model for studying these processes, wherein Timeless (Tim) plays a critical role in mediating nuclear entry of the transcriptional repressor Period (Per) and the photoreceptor Cryptochrome (Cry) entrains the clock by triggering Tim degradation in light2,3. Here, through cryogenic electron microscopy of the Cry-Tim complex, we show how a light-sensing cryptochrome recognizes its target. Cry engages a continuous core of amino-terminal Tim armadillo repeats, resembling how photolyases recognize damaged DNA, and binds a C-terminal Tim helix, reminiscent of the interactions between light-insensitive cryptochromes and their partners in mammals. The structure highlights how the Cry flavin cofactor undergoes conformational changes that couple to large-scale rearrangements at the molecular interface, and how a phosphorylated segment in Tim may impact clock period by regulating the binding of Importin-α and the nuclear import of Tim-Per4,5. Moreover, the structure reveals that the N terminus of Tim inserts into the restructured Cry pocket to replace the autoinhibitory C-terminal tail released by light, thereby providing a possible explanation for how the long-short Tim polymorphism adapts flies to different climates6,7.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Criptocromos , Proteínas de Drosophila , Drosophila melanogaster , Animais , Relógios Circadianos/fisiologia , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Criptocromos/química , Criptocromos/metabolismo , Criptocromos/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efeitos da radiação , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Luz , Mamíferos/metabolismo , Microscopia Crioeletrônica , Transporte Ativo do Núcleo Celular/efeitos da radiação , alfa Carioferinas/metabolismo
7.
Bioconjug Chem ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921260

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for investigating the structure and dynamics of proteins. The introduction of paramagnetic moieties at specific positions in a protein enables precise measurement of local structure and dynamics. This technique, termed site-directed spin-labeling, has traditionally been performed using cysteine-reactive radical-containing probes. However, large proteins are more likely to contain multiple cysteine residues and cysteine labeling at specific sites may be infeasible or impede function. To address this concern, we applied three peptide-ligating enzymes (sortase, asparaginyl endopeptidase, and inteins) for nitroxide labeling of N- and C-termini of select monomeric and dimeric proteins. Continuous wave and pulsed EPR (double electron electron resonance) experiments reveal specific attachment of nitroxide probes to ether N-termini (OaAEP1) or C-termini (sortase and intein) across three test proteins (CheY, CheA, and iLOV), thereby enabling a straightforward, highly specific, and general method for protein labeling. Importantly, the linker length (3, 5, and 9 residues for OaAEP1, intein, and sortase reactions, respectively) between the probe and the target protein has a large impact on the utility of distance measurements by pulsed EPR, with longer linkers leading to broader distributions. As these methods are only dependent on accessible N- and C-termini, we anticipate application to a wide range of protein targets for biomolecular EPR spectroscopy.

8.
Nat Commun ; 14(1): 1057, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828841

RESUMO

The link between cofactor binding and protein activity is well-established. However, how cofactor interactions modulate folding of large proteins remains unknown. We use optical tweezers, clustering and global fitting to dissect the folding mechanism of Drosophila cryptochrome (dCRY), a 542-residue protein that binds FAD, one of the most chemically and structurally complex cofactors in nature. We show that the first dCRY parts to fold are independent of FAD, but later steps are FAD-driven as the remaining polypeptide folds around the cofactor. FAD binds to largely unfolded intermediates, yet with association kinetics above the diffusion-limit. Interestingly, not all FAD moieties are required for folding: whereas the isoalloxazine ring linked to ribitol and one phosphate is sufficient to drive complete folding, the adenosine ring with phosphates only leads to partial folding. Lastly, we propose a dCRY folding model where regions that undergo conformational transitions during signal transduction are the last to fold.


Assuntos
Criptocromos , Drosophila , Animais , Drosophila/metabolismo , Criptocromos/metabolismo , Proteínas/metabolismo , Dobramento de Proteína , Flavina-Adenina Dinucleotídeo/metabolismo
9.
Biochemistry ; 61(23): 2672-2686, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36321948

RESUMO

Bacterial chemoreceptors regulate the cytosolic multidomain histidine kinase CheA through largely unknown mechanisms. Residue substitutions in the peptide linkers that connect the P4 kinase domain to the P3 dimerization and P5 regulatory domain affect CheA basal activity and activation. To understand the role that these linkers play in CheA activity, the P3-to-P4 linker (L3) and P4-to-P5 linker (L4) were extended and altered in variants of Thermotoga maritima (Tm) CheA. Flexible extensions of the L3 and L4 linkers in CheA-LV1 (linker variant 1) allowed for a well-folded kinase domain that retained wild-type (WT)-like binding affinities for nucleotide and normal interactions with the receptor-coupling protein CheW. However, CheA-LV1 autophosphorylation activity registered ∼50-fold lower compared to WT. Neither a WT nor LV1 dimer containing a single P4 domain could autophosphorylate the P1 substrate domain. Autophosphorylation activity was rescued in variants with extended L3 and L4 linkers that favor helical structure and heptad spacing. Autophosphorylation depended on linker spacing and flexibility and not on sequence. Pulse-dipolar electron-spin resonance (ESR) measurements with spin-labeled adenosine 5'-triphosphate (ATP) analogues indicated that CheA autophosphorylation activity inversely correlated with the proximity of the P4 domains within the dimers of the variants. Despite their separation in primary sequence and space, the L3 and L4 linkers also influence the mobility of the P1 substrate domains. In all, interactions of the P4 domains, as modulated by the L3 and L4 linkers, affect domain dynamics and autophosphorylation of CheA, thereby providing potential mechanisms for receptors to regulate the kinase.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Histidina Quinase/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/genética , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas de Bactérias/química , Modelos Moleculares , Thermotoga maritima/metabolismo , Quimiotaxia , Proteínas de Escherichia coli/química
10.
J Biol Chem ; 298(12): 102598, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252616

RESUMO

The Per-Arnt-Sim (PAS; named for the representative proteins: Period, Aryl hydrocarbon receptor nuclear translocator protein and Single-minded) domain of the dimeric Escherichia coli aerotaxis receptor Aer monitors cellular respiration through a redox-sensitive flavin adenine dinucleotide (FAD) cofactor. Conformational shifts in the PAS domain instigated by the oxidized FAD (FADOX)/FAD anionic semiquinone (FADASQ) redox couple traverse the HAMP (histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins, and phosphatases) and kinase control domains of the Aer dimer to regulate CheA kinase activity. The PAS domain of Aer is unstable and has not been previously purified. Here, residue substitutions that rescue FAD binding in an FAD binding-deficient full-length Aer variant were used in combination to stabilize the Aer PAS domain. We solved the 2.4 Å resolution crystal structure of this variant, Aer-PAS-GVV, and revealed a PAS fold that contains distinct features associated with FAD-based redox sensing, such as a close contact between the Arg115 side chain and N5 of the isoalloxazine ring and interactions of the flavin with the side chains of His53 and Asn85 that are poised to convey conformational signals from the cofactor to the protein surface. In addition, we determined the FADox/FADASQ formal potentials of Aer-PAS-GVV and full-length Aer reconstituted into nanodiscs. The Aer redox couple is remarkably low at -289.6 ± 0.4 mV. In conclusion, we propose a model for Aer energy sensing based on the low potential of Aer-PAS-FADox/FADASQ couple and the inability of Aer-PAS to bind to the fully reduced FAD hydroquinone.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Estrutura Terciária de Proteína , Oxirredução
11.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 975-985, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916222

RESUMO

Fixed-target serial crystallography allows the high-throughput collection of diffraction data from small crystals at room temperature. This methodology is particularly useful for difficult samples that have sensitivity to radiation damage or intolerance to cryoprotection measures; fixed-target methods also have the added benefit of low sample consumption. Here, this method is applied to the structure determination of the circadian photoreceptor cryptochrome (CRY), previous structures of which have been determined at cryogenic temperature. In determining the structure, several data-filtering strategies were tested for combining observations from the hundreds of crystals that contributed to the final data set. Removing data sets based on the average correlation coefficient among equivalent reflection intensities between a given data set and all others was most effective at improving the data quality and maintaining overall completeness. CRYs are light sensors that undergo conformational photoactivation. Comparisons between the cryogenic and room-temperature CRY structures reveal regions of enhanced mobility at room temperature in loops that have functional importance within the CRY family of proteins. The B factors of the room-temperature structure correlate well with those predicted from molecular-dynamics simulations.


Assuntos
Criptocromos , Drosophila , Animais , Criptocromos/metabolismo , Cristalografia , Cristalografia por Raios X , Drosophila/metabolismo , Síncrotrons , Temperatura
12.
Structure ; 30(6): 851-861.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35397203

RESUMO

Cryptochrome (CRY) entrains the fly circadian clock by binding to Timeless (TIM) in light. Undocking of a helical C-terminal tail (CTT) in response to photoreduction of the CRY flavin cofactor gates TIM recognition. We present a generally applicable select western-blot-free tagged-protein interaction (SWFTI) assay that allowed the quantification of CRY binding to TIM in dark and light. The assay was used to study CRY variants with residue substitutions in the flavin pocket and correlate their TIM affinities with CTT undocking, as measured by pulse-dipolar ESR spectroscopy and evaluated by molecular dynamics simulations. CRY variants with the CTT removed or undocked bound TIM constitutively, whereas those incapable of photoreduction bound TIM weakly. In response to the flavin redox state, two conserved histidine residues contributed to a robust on/off switch by mediating CTT interactions with the flavin pocket and TIM. Our approach provides an expeditious means to quantify the interactions of difficult-to-produce proteins.


Assuntos
Criptocromos , Proteínas de Drosophila , Animais , Criptocromos/química , Criptocromos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/química , Flavinas/metabolismo , Luz
13.
J Phys Chem B ; 125(28): 7763-7773, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34235935

RESUMO

Electron transport through aromatic species (especially tryptophan and tyrosine) plays a central role in water splitting, redox signaling, oxidative damage protection, and bioenergetics. The cytochrome c peroxidase (CcP)-cytochrome c (Cc) complex (CcP:Cc) is used widely to study interprotein electron transfer (ET) mechanisms. Tryptophan 191 (Trp191) of CcP supports hole hopping charge recombination in the CcP:Cc complex. Experimental studies find that when Trp191 is substituted by tyrosine, phenylalanine, or redox-active aniline derivatives bound in the W191G cavity, enzymatic activity and charge recombination rates both decrease. Theoretical analysis of these CcP:Cc complexes finds that the ET kinetics depend strongly on the chemistry of the modified Trp site. The computed electronic couplings in the W191F and W191G species are orders of magnitude smaller than in the native protein, due largely to the absence of a hopping intermediate and the large tunneling distance. Small molecules bound in the W191G cavity are weakly coupled electronically to the Cc heme, and the structural disorder of the guest molecule in the binding pocket may contribute further to the lack of enzymatic activity. The couplings in W191Y are not substantially weakened compared to the native species, but the redox potential difference for tyrosine vs tryptophan oxidation accounts for the slower rate in the Tyr mutant. Thus, theoretical analysis explains why only the native Trp supports rapid hole hopping in the CcP:Cc complex. Favorable free energies and electronic couplings are essential for establishing an efficient hole hopping relay in this protein-protein complex.


Assuntos
Citocromo-c Peroxidase , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Transporte de Elétrons , Cinética , Oxirredução
14.
J Am Chem Soc ; 143(25): 9314-9319, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34154323

RESUMO

All radical S-adenosylmethionine (radical-SAM) enzymes, including the noncanonical radical-SAM enzyme diphthamide biosynthetic enzyme Dph1-Dph2, require at least one [4Fe-4S](Cys)3 cluster for activity. It is well-known in the radical-SAM enzyme community that the [4Fe-4S](Cys)3 cluster is extremely air-sensitive and requires strict anaerobic conditions to reconstitute activity in vitro. Thus, how such enzymes function in vivo in the presence of oxygen in aerobic organisms is an interesting question. Working on yeast Dph1-Dph2, we found that consistent with the known oxygen sensitivity, the [4Fe-4S] cluster is easily degraded into a [3Fe-4S] cluster. Remarkably, the small iron-containing protein Dph3 donates one Fe atom to convert the [3Fe-4S] cluster in Dph1-Dph2 to a functional [4Fe-4S] cluster during the radical-SAM enzyme catalytic cycle. This mechanism to maintain radical-SAM enzyme activity in aerobic environments is likely general, and Dph3-like proteins may exist to keep other radical-SAM enzymes functional in aerobic environments.


Assuntos
Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ditionita/metabolismo , Histidina/biossíntese , Ferro/química , Proteínas Ferro-Enxofre/química , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas Repressoras/química , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química
15.
Biochemistry ; 60(15): 1148-1164, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33787242

RESUMO

Proton-coupled electron transfer reactions play critical roles in many aspects of sensory phototransduction. In the case of flavoprotein light sensors, reductive quenching of flavin excited states initiates chemical and conformational changes that ultimately transmit light signals to downstream targets. These reactions generally require neighboring aromatic residues and proton-donating side chains for rapid and coordinated electron and proton transfer to flavin. Although photoreduction of flavoproteins can produce either the anionic (ASQ) or neutral semiquinone (NSQ), the factors that favor one over the other are not well understood. Here we employ a biologically active variant of the light-oxygen-voltage (LOV) domain protein VVD devoid of the adduct-forming Cys residue (VVD-III) to probe the mechanism of flavin photoreduction and protonation. A series of isosteric and conservative residue replacements studied by rate measurements, fluorescence quantum yields, FTIR difference spectroscopy, and molecular dynamics simulations indicate that tyrosine residues facilitate charge recombination reactions that limit sustained flavin reduction, whereas methionine residues facilitate radical propagation and quenching and also gate solvent access for flavin protonation. Replacement of a single surface Met residue with Leu favors formation of the ASQ over the NSQ and desensitizes photoreduction to oxidants. In contrast, increasing site hydrophilicity by Gln substitution promotes rapid NSQ formation and weakens the influence of the redox environment. Overall, the photoreactivity of VVD-III can be understood in terms of redundant electron donors, internal hole quenching, and coupled proton transfer reactions that all depend upon protein conformation, dynamics, and solvent penetration.


Assuntos
Flavinas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Luz , Metionina/metabolismo , Engenharia de Proteínas , Prótons , Transporte de Elétrons , Proteínas Fúngicas/genética , Simulação de Dinâmica Molecular , Domínios Proteicos
16.
Commun Biol ; 4(1): 249, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637846

RESUMO

Light-induction of an anionic semiquinone (SQ) flavin radical in Drosophila cryptochrome (dCRY) alters the dCRY conformation to promote binding and degradation of the circadian clock protein Timeless (TIM). Specific peptide ligation with sortase A attaches a nitroxide spin-probe to the dCRY C-terminal tail (CTT) while avoiding deleterious side reactions. Pulse dipolar electron-spin resonance spectroscopy from the CTT nitroxide to the SQ shows that flavin photoreduction shifts the CTT ~1 nm and increases its motion, without causing full displacement from the protein. dCRY engineered to form the neutral SQ serves as a dark-state proxy to reveal that the CTT remains docked when the flavin ring is reduced but uncharged. Substitutions of flavin-proximal His378 promote CTT undocking in the dark or diminish undocking in the light, consistent with molecular dynamics simulations and TIM degradation activity. The His378 variants inform on recognition motifs for dCRY cellular turnover and strategies for developing optogenetic tools.


Assuntos
Benzoquinonas/metabolismo , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas do Olho/metabolismo , Flavinas/metabolismo , Animais , Criptocromos/genética , Criptocromos/efeitos da radiação , Proteínas de Drosophila/genética , Proteínas de Drosophila/efeitos da radiação , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas do Olho/genética , Proteínas do Olho/efeitos da radiação , Luz , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Relação Estrutura-Atividade
17.
Nat Commun ; 11(1): 5763, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188180

RESUMO

The prokaryotic chemotaxis system is arguably the best-understood signaling pathway in biology. In all previously described species, chemoreceptors organize into a hexagonal (P6 symmetry) extended array. Here, we report an alternative symmetry (P2) of the chemotaxis apparatus that emerges from a strict linear organization of the histidine kinase CheA in Treponema denticola cells, which possesses arrays with the highest native curvature investigated thus far. Using cryo-ET, we reveal that Td chemoreceptor arrays assume an unusual arrangement of the supra-molecular protein assembly that has likely evolved to accommodate the high membrane curvature. The arrays have several atypical features, such as an extended dimerization domain of CheA and a variant CheW-CheR-like fusion protein that is critical for maintaining an ordered chemosensory apparatus. Furthermore, the previously characterized Td oxygen sensor ODP influences CheA ordering. These results suggest a greater diversity of the chemotaxis signaling system than previously thought.


Assuntos
Membrana Celular/metabolismo , Células Quimiorreceptoras/citologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/ultraestrutura , Células Quimiorreceptoras/metabolismo , Quimiotaxia , Sequência Conservada , Escherichia coli/citologia , Deleção de Genes , Histidina Quinase/metabolismo , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Treponema/metabolismo
18.
Sci Signal ; 13(657)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172954

RESUMO

Bacterial chemoreceptors, the histidine kinase CheA, and the coupling protein CheW form transmembrane molecular arrays with remarkable sensing properties. The receptors inhibit or stimulate CheA kinase activity depending on the presence of attractants or repellants, respectively. We engineered chemoreceptor cytoplasmic regions to assume a trimer of receptor dimers configuration that formed well-defined complexes with CheA and CheW and promoted a CheA kinase-off state. These mimics of core signaling units were assembled to homogeneity and investigated by site-directed spin-labeling with pulse-dipolar electron-spin resonance spectroscopy (PDS), small-angle x-ray scattering, targeted protein cross-linking, and cryo-electron microscopy. The kinase-off state was especially stable, had relatively low domain mobility, and associated the histidine substrate and docking domains with the kinase core, thus preventing catalytic activity. Together, these data provide an experimentally restrained model for the inhibited state of the core signaling unit and suggest that chemoreceptors indirectly sequester the kinase and substrate domains to limit histidine autophosphorylation.


Assuntos
Quimiotaxia , Proteínas de Escherichia coli/química , Escherichia coli/química , Histidina Quinase/química , Proteínas Quimiotáticas Aceptoras de Metil/química , Complexos Multiproteicos/química , Transdução de Sinais , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Histidina Quinase/genética , Proteínas Quimiotáticas Aceptoras de Metil/genética , Complexos Multiproteicos/genética , Estrutura Quaternária de Proteína
19.
Cell Chem Biol ; 27(9): 1109-1111, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946755

RESUMO

Mammalian cryptochromes regulate sleep and metabolism as components of the circadian clock. In this issue of Cell Chemical Biology, Miller et al. (2020a) use phenotypic chemical screens to identify selective modulators of two cryptochrome isoforms. Binding specificity depends on conformational patterning of the ligand-binding pocket and a disordered C-terminal domain.


Assuntos
Relógios Circadianos , Criptocromos , Animais , Ritmo Circadiano , Mamíferos , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA